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A combination of protein-ligand docking and ligand-based QSAR approaches has been elaborated, aiming
to speed-up the process of virtual screening. In particular, this approach utilizes docking scores generated
for already processed compounds to build predictive QSAR models that, in turn, assess hypothetical target
binding affinities for yet undocked entries. The “progressive docking” has been tested on drug-like substances
from the NCI database that have been docked into several unrelated targets, including human sex hormone
binding globulin (SHBG), carbonic anhydrase, corticosteroid-binding globulin, SARS 3C-like protease, and
HIV1 reverse transcriptase. We demonstrate that progressive docking can reduce the amount of computations
1.2- to 2.6-fold (when compared to traditional docking), while maintaining 80-99% hit recovery rates.
This progressive-docking procedure, therefore, substantially accelerates high throughput screening, especially
when using high accuracy (slower) docking approaches and large-sized datasets, and has allowed us to
identify several novel potent nonsteroidal SHBG ligands.

Introduction

This work continues our efforts on the development and
application of “inductive” QSAR descriptors for in silico
modeling studies, in particular, for the discovery and optimiza-
tion of drug leads.

In a series of previous studies, we reported the development
of inductive 3D-sensitive QSAR descriptors that are related to
atomic electronegativity, covalent radii, and intramolecular
distances and can be computed by equations for steric and
inductive constants,1-4 inductive electronegativity,5,6 inductive
partial charge,7,8 and inductive analogues of chemical hardness
and softness6,8 (see eqs 1-6 in the Materials and Methods
section). To date, 50 global inductive descriptors (calculated
for a whole molecule) have been developed and they have
already demonstrated high effectiveness in predicting physical-
chemical properties, reactivity, and the biological activity of
compounds. The detailed description of inductive QSAR
descriptors and their applications can be found in a recent
review.9

In our recent studies, we utilized global inductive descriptors
in combination with conventional in silico drug design tools
for the discovery of novel nonsteroidal ligands for human sex
hormone-binding globulin (SHBG).8,10

SHBG as a Drug Target. Plasma SHBG is the liver-
expressed protein that binds biologically active androgens and
estrogens and plays a pivotal role in regulating the metabolic
clearance of these sex steroids and their access to target tissues.
Abnormal levels of SHBG, resulting in alterations in unbounded
sex steroids, have been implicated in numerous human diseases
including endometrial cancer,11 ovarian dysfunction,12 infertil-
ity,13 osteoporosis,14,15diabetes,16 and cardiovascular diseases17

among others. Thus, the competitive formation of SHBG-

endogenous steroid complexes through the use of novel ligands
represents a possible way of liberating endogenous steroids to
enhance their biological activities, and this could have potential
therapeutic ramifications in the context of diseases associated
with steroid insufficiency. Therefore, the discovery of potent
nonsteroidal SHBG inhibitors represents an attractive drug
design task that can lead to useful alternatives for potentially
harmful hormone-replacement therapies.

Aside from being an attractive drug target, human SHBG
represents an important model system for conventional in silico
chemical studies. Thus, association constants of SHBG with the
series of steroidal derivatives form a well-established “steroid
benchmark set” that has been investigated in a variety of
molecular modeling studies (for the latest examples, see refs
18-27). The structure of the SHBG protein can also serve as a
useful and challenging test system. Thus, nine crystal structures
of the N-terminal domain of this protein have been solved to
date and deposited in the Protein Databank.28 These structures
corresponding to native SHBG complexes with different ste-
roidal ligands provide detailed insight into the topology of the
steroid-binding sites and the molecular basis of interactions
between steroid ligands and SHBG. In addition, experimental
binding affinities between native SHBG or SHBG variants and
a range of chemicals are also available.8,10,29-32

Use of Inductive Parameters in Discovery of SHBG
Ligands. In our published studies,8,10we tested several in-house
molecular modeling solutions utilizing global inductive descrip-
tors in combination with conventional drug design tools and
discovered a number of nonsteroidal antagonists that bind to
human SHBG with affinity constants of up to 1.2× 106 M-1

and which can efficiently displace bound sex hormones.
Pharmacophore-Based Lead Discovery.Thus, in our recent

work10 we developed several pharmacophore models for SHBG
binders and used them to screen an electronic collection of
∼24 000 natural compounds. As a result, we identified 105
natural derivatives that met the pharmacophore requirements.
Thus, we faced a well-known and long-standing challenge of
ranking the pharmacophore-derived “hits”. To prioritize the
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identified 105 nonsteroidal chemicals for further experimental
testing, we used inductive descriptors in combination with the
method of artificial neural networks (ANN).33 Namely, we
assembled a training set of 78 compounds known to interact
with SHBG and complied a “negative control” set of 165
chemicals with unknown affinities to SHBG. Furthermore, we
have trained the ANN model, enabling us to relate 28 inductive
descriptors, calculated for those 243 compounds, to their
Boolean (1|0) protein binding criteria. The resulting ANN-based
binary QSAR model has then been used to prioritize pharma-
cophore-identified natural substances for their potential ability
to bind SHBG. As a result, 22 top-ranked nonsteroidal sub-
stances have been tested empirically, and eight of them
(corresponding to four different molecular scaffolds) demon-
strated sufficient steroid replacement activity.

Docking with Inductive Protein Charges. In another recent
work,10 we reported a novel iterative approach that allows rapid
and conformation-sensitive computation of inductive atomic
charges in proteins. The use of the inductive charge values in
a comparative docking study involving human SHBG, and an
extended steroid benchmark set, demonstrated their superior
performance compared to that of several conventional protein
charging systems (including CHARMM, AMBER, MMFF,
OPLS, and PEOE among others), and this allowed additional
potential drug hits to be discovered for the SHBG target. Thus,
inductive reactivity indices can assist in various aspects of in
silico drug research, because they effectively cover a broad range
of bound atoms and molecules whose properties vary in relation
to their size, polarizability, electronegativity, compactness,
mutual inductive and steric influence, distribution of electronic
density, and so on.9 We now report the development of a novel
QSAR/docking protocol that utilizes QSAR solutions based on
inductive and conventional global QSAR descriptors to speed
up the procedure of virtual high throughput screening.

Results and Discussion

As indicated above, inductive descriptors cover a broad range
of molecular properties and can be used effectively to create
various binary inductive QSAR classifiers, such as the previ-
ously reported models of antibiotic-likeness,9,34drug-likeness,9,35

and bacterial-metabolite-likeness,35 which we have created using
inductive descriptors. Combinations of global inductive param-
eters with other QSAR descriptors have also been utilized
successfully to distinguish metabolic substances isolated from
human, bacterial, plant, and fungal cells and have helped identify
the extent of overlap between drugs, inactive chemicals, and
metabolites in the descriptor space.36,37In the current study, we
have employed QSAR solutions based on a combination of
global inductive and other QSAR parameters to create quantita-
tive models that enable assessments ofhypotheticaldocking
scores for defined protein-ligand systems.

It is a commonly held view that one of the main purposes of
virtual high-throughout screening is to filter out nonbinders,
while positive docking predictions (hits) typically undergo
additional in silico evaluation. Thus, QSAR models capable of
producing hypothetical docking scores could help identify the
most probable nonbinders in docking databases and, therefore,
reduce the amount of computations required. Such an approach
could complement various predocking filters, such as the
rejection of docking candidates based on their size, mass,
volume, number of atoms,38 pharmacophore constrains,39 and/
or drug-likeness criteria40 among others. Effective reduction of
docking computations becomes increasingly important as the
content of conventional docking databases expands and can

routinely encompass millions of chemical structures. Naturally,
ligand-based QSAR has been suggested as a plausible alterna-
tive41 or supplementary42,43 approach to structure-based lead
discovery

In this study, we conducted in silico screening of the National
Cancer Institute (NCI) drug-like dataset to identify potential
binders for human SHBG using two crystal structures of the
protein corresponding to 1KDM and 1D2S entries in the Protein
Databank. These two PDB entities were selected for the study
because they capture important variations in the SHBG active
site that may occur upon ligand binding (see ref 8 for relevant
discussion). Figure 1 features the simplified superimposed
structures of the active sites of 1D2S and 1KDM, defined as
the 4.5 Å environment of the bound ligand-dihydrotestosterone.
The two proteins are respectively marked in orange (1D2S) and
blue (1KDM) wires, illustrating the flexibility of a loop segment
Pro130-Arg135 that can “gate” the active site entry and affect
coordination of the functional groups at C3 and C17 of the
bound androgen or estrogen, respectively.29

For the purpose of protein-ligand docking, we utilized the
Glide program,44 as in our previous studies,8,10 which is
generally viewed as one of the most accurate docking pack-
ages.45,46 The Glide samples conformational space of a ligand
during docking using an incremental construction method that
makes it a very useful approach. However, the high accuracy
of Glide significantly reduces its speed when compared to many
other docking protocols, and on average it requires up to 4 min
to dock one molecule.47

To validate the applicability of the docking protocol, we used
Glide software to dock numerous compounds with known
SHBG binding affinities into the 1KDM and 1D2S active sites,
and this involved using default program parameters. The
resulting GlideScores for the majority of compounds studied
(the structures can be found in the Supporting Information)
reproduced the corresponding experimental association constants
with good accuracy (Figure 2b,d).

In addition, the ligand position was also reproduced accurately
by docking (Figure 2b,d), which confirmed the overall adequacy
of the adopted Glide protocol.

The hypothesis we investigated further is that QSAR models
trained on a limited set of docking scores can sufficiently
approximate potential target-binding affinities for all compounds
in the docking database. If that is true, the obvious nonbinders
can be removed from the docking database, and the amount of

Figure 1. The structures of the active sites of 1D2S and 1KDM SHBG
structures, superimposed. 1D2S and 1KDM residues within 4.5 Å of
the ligand are shown as orange and blue wires, respectively. Both
proteins are in complex with DHT, and the ligands are shown in stick
mode. Two of the active site residues in 1KDM were not resolvable in
1D2S.
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required docking computations should, therefore, be significantly
decreased. The underlying assumption upon which this is based
is the following: when variations in binding orientations of
potential ligands is not significant (as it may be expected in the
case of a small steroid-binding pocket) and the nature of the
target atomic interior remains relatively constant, the differences
in binding affinities of compounds can be roughly related to
their own structures. The assumption of invariability of the
docking orientations for a given target is common for large-
scale docking studies42,43,48and, if valid, the target affinity values
(experimental,Ka or IC50, or theoretical, the docking scores)
can be approximated by ligand-based QSAR solutions.

Consider a typical docking experiment that produces a vast
amount of scoring values that are usually utilized in a very
limited way, such that the docking scores are usually used only
to identify potential binders upon the completion of the docking.
In this context, we propose that the generated docking scores
can be used “on the fly” to gain insight into the factors that
determine successful docking and to create intermediate ligand-
based QSAR models that allow us to reduce the amount of
remaining, queried docking jobs. It is hard to expect a priori,
that such QSAR solutions will have very high predictive power,
but nonetheless, we anticipated that they would be sufficient
for identifying the most probable nonbinders in the docking set.

Compound Database.For the purpose of this study, we
selected a database of compounds offered by the NCI.49 The
original set of 223 536 entries has been reduced to 89 941
compounds by applying the expanded Lipinski’s drug-likeness
criteria: molecular weight between 300 and 800 Da; the
presence of 1-10 hydrogen-bond acceptors and 1-5 hydrogen-
bond donors; less than 10 rotatable bonds; and overall hydro-
phobicity below log P ) 5.0. For all 89 941 nonsteroidal
structures from the NCI set satisfying the above criteria, we
calculated 28 inductive parameters for further QSAR modeling
(outlined in Table 1).

Thus, 90 184 substances, including NCI drug-like compounds
and compounds from the expanded steroids benchmark set,10

have all been docked into the 1KDM active site using the Glide
2.7 protocol. The resulting GlideScore values have then been

used to simulate the progressive-docking procedure. In particu-
lar, we investigated how the SHBG ligands could have been
recovered (compared to conventional docking) if we had
incorporated intermediate QSAR solutions into the docking
pipeline. The idea was to determine if a significant number of
nonbinders could be rejected without docking them into the
protein’s active site, while preserving the true binders (com-
pounds with the GlideScore< -8.5).

Database Clustering.To maximize the range of GlideScore
values to be used for QSAR modeling within a drawn sample,
the original docking database consisting of 90 272 entries was
clustered using QSAR descriptors and the value-based clustering
procedure implemented in MOE50 (with a Tanimoto coefficient
of 0.85). This approach enabled us to implement a sampling
algorithm that selects the most diverse set of chemical structures
from the database. In particular, we developed the SVL-script
that draws upon a defined number of compounds (such as 1000,
5000, 10 000, and 20 000) from the clustered database in a way
that the sample is maximally represented within all database
clusters. In this way, the QSAR solutions created for the sampled
GlideScore values could be expected to cover the entire
descriptor space of the docking database and could be applied
to untested database entries.

Simulated Progressive Docking.Figure 3 illustrates the
progressive-docking procedure we have developed. The process
begins with the previously mentioned computation of inductive
descriptors for all database entries and subsequent descriptor-
based database clustering (steps 2-3). Other predocking filters,
such as drug-likeness criteria, can also be incorporated into the
process (marked as step 1 on the chart). It is perhaps worth
mentioning that this procedure is not limited by the nature of
compounds in the docking database and can be applied to
substantially focused libraries enriched by various predocking
filters.

At the following step 4, the initial set of compounds, covering
the chemical space of the docking database, gets selected. At
step 5, they undergo docking with the target using Glide
software to produce the initial set of GlideScore values.

During the following step 6, all significant docking scores

Figure 2. Dependences between the negative GlideScore values produced by the known binders of the studied protein targets vs the corresponding
experimental affinity/activity values. (a) CBG, pK values vs the docking scores; (b) SHBG 1D2S PDB structure, pK values vs the docking scores;
(c) HCA, pIC50 values vs the docking scores; (d) SHBG 1KDM PDB structure, pK values vs the docking scores; (e) SARS protein, pIC50 values
versus the docking scores; (f) HIV reverse transcriptase protein, pEC50 values vs the docking scores.
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are utilized to build a linear QSAR model approximating these
values by QSAR descriptors computed for the corresponding
molecules. As Figure 3 illustrates, the resulting QSAR solution
is then used at step 7 to estimate hypothetical GlideScores for
the remaining undocked chemical structures in the queried
database. Based on these predicted values, unprocessed database
entries that produce the worst docking scores are removed from
further docking (step 8). Steps 4-8 of the progressive-docking
procedure can then be repeated until all entries of the docking
database are processed. At each cycle, a fraction of the
remaining undocked entries are removed. We investigated two
possibilities, that is, when 10% or 20% of entries with the most
positive predicted docking scores are removed from consider-
ation. Figure 4 illustrates the QSAR-predicted GlideScore for
∼80 000 compounds from the NCI drug-like database plotted
against the corresponding empirically established values. The
QSAR model created for the initially docked 10 000 structures
has been used for the prediction; the light-blue color codes are
for those 20% of the 80 000 untested entries that are rejected
from further analysis. As the graph illustrates, none of∼16 000
substances rejected at this stage of progressive docking produced
significant (< -8.5) GlideScore values. The chart also indicates
that there is a general correspondence between the predicted
and the actual docking scores for the substances studied.

The initial steps 1-3 of the progressive-docking protocol
described above are presented in bold solid lines in Figure 3.
All subsequent steps (steps 4-8 of the procedure) that occur in
a recursive manner are shown in dashed contours. We imple-

mented this type of recursive protocol to establish a gradual
enrichment of QSAR solutions by empirical data (docking
scores). This allows a more conservative rejection of undocked
entries and avoids false negative predictions. On the other hand,
more aggressive approaches could be implemented: one can
use a limited set ofX entries (covering the descriptors space of
the database) to create a QSAR model that can be approximate
GlideScore values for the remaining 90- X database entries.
Although such an approximation might be much faster, it could
only be used if the quality of the initial QSAR model is very
high. Otherwise, such a procedure will likely result in a number
of false negative predictions and reject many potential hits. It
is also apparent that a reasonable balance between data
processing speed and an ability to recover true positives by the
progressive-docking procedure will depend on the choice of
rejection criteria and the sampling set size.

As mentioned above, we considered a 10% and 20% rejection
criteria and sample sizes varying from 1000, 5000, 10 000, and
20 000 substances and evaluated the simulated recovery of
potential SHBG ligands (GlideScore< -8.5) from the original
set of 90 184 molecules. Figure 5 illustrates the results of
simulated progressive docking with the 1D2S structure and the
NCI drug-like dataset using various settings. The horizontal axis
corresponds to the number of the database entries processed by
the Glide program, and the vertical axis reflects the number of
the true positives recovered. It is important to note that Figure
5 does not illustrate the true positive content of the already
processed and sorted docking database, as in conventional decoy

Table 1. Statistical Parameters of QSAR Models Relating GlideScore Values to Inductive Descriptorsa

step 1 step 2 step 3 step 4 step 5 step 6 total

compds docked 10 083 20 328 30 216 37 251 45 805 51 366 90 184
compds docked efficiently (GScore< -4) 688 1403 2105 3101 3257 3676 5653
TP (GScore< -8.5) 27 58 89 111 137 155 281
expected
TP (GScore< -8.5) 31 69 120 158 223 270
observed
false negatives 0 2 4 10 11 11

Compds rejected from docking 16 020 26 787 33 423 37 428 38 818

RMSE 0.77 0.79 0.80 0.80 0.79
Q2 0.61 0.56 0.53 0.63 0.49

intercept 6.97 -5.80 -9.26 -7.77 -11.16
average_EO_neg -0.65 -0.46 -0.37 -0.43 -0.34
average_EO_pos -7.45 -3.91 -2.90 -4.46 -1.77
average_neg_charge 1.33 0.77 0.48 0.54 0.77
average_pos_charge -0.77 -6.16 -7.72 -3.04 -7.92
EO_equalized 0.96 0.63 1.05 2.67 0.56
global_hardness 18.65 34.04 33.28 23.32 34.21
hardness_of_most_pos -0.35 -0.10 -0.15 0.04 0.27
largest_neg_softness 0.01 0.02 0.01 0.03 0.05
largest_rs_i_mol 4.58 6.97 7.36 5.42 8.14
largest_rs_mol_i 0.36 1.05 0.89 0.58 0.97
most_neg_charge 0.71 -0.26 -0.24 -0.46 -0.24
most_neg_rs_mol_i -1.54 -1.29 -1.27 -1.34 -1.16
most_neg_sigma_i_mol 0.58 -0.06 -0.23 -0.26 -0.59
most_neg_sigma_mol_i -0.38 0.04 0.05 0.18 0.10
most_pos_charge -0.16 -0.28 -0.34 -0.38 -0.42
most_pos_rs_i_mol 0.17 0.31 0.33 0.31 0.29
most_pos_sigma_i_mol -0.01 0.11 0.12 0.21 0.15
most_pos_sigma_mol_i 2.46 1.14 0.90 0.69 0.43
smallest_pos_softness -0.85 -0.63 -0.37 -0.14 -0.46
softness_of_most_neg 0.05 0.10 0.12 0.11 0.12
sum_neg_hardness -0.23 0.22 0.18 0.06 0.29
sum_pos_hardness 0.14 0.32 0.30 0.30 0.29
total_charge -0.15 0.01 0.00 -0.14 0.00
total_neg_softness 0.00 -0.01 0.00 0.00 -0.01
total_pos_softness 0.01 0.00 0.00 0.00 0.00
total_sigma_mol_i -0.42 -0.31 -0.28 -0.33 -0.25

aThe reported solution corresponds to the progressive docking with the 1KDM structure, QSAR sampling for every 10 000 docked substances, and with
20% rejection rate.
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docking studies; instead, it features theactual recovery of
potential binders (compounds with the Glide Score< -8.5)
during the routine.

Thus, it is understandable that a similar nonprogressive-
docking protocol, which processed a randomized docking
database in sequential order, resulted in a linear dependence

Figure 3. General scheme for progressive docking. The recursive cycle is illustrated by the dashed lines and noncolored objects, and the preparation
cycle is illustrated by the solid lines and grayed objects. Other scheme notations: rectangles, storage; diamonds, decisions; and hexagons, processes.

Figure 4. Experimental vs QSAR-predicted GlideScore values for the entries of NCI drug-like database (first round of progressive docking). The
20% of nondocked entries to be excluded from the databases are color-coded in light blue.
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between the number of processed compounds and identified
SHBG hits, as indicated in black in Figure 5. It is also apparent
that the smaller size of the sampling set and the larger rate of
rejection of nondocked entries promotes faster processing of
molecular database and results in greater numbers of false
negatives (compounds that could be docked sufficiently but were
underestimated by the QSAR models).

The data in Figure 5 also illustrate that the sampling set of
10 000 entries (roughly 10% of the docking database) and a
20% rejection criteria results in the most balanced docking
outcomes: these settings allowed us to reject 43% of compounds
from the docking set (38 818 out of 90 184 entries) and to
recover 270 of the successfully docked substances, while
nonprogressive docking identified 281 substances. The statistical
parameters of linear QSAR solutions and the number of true
positive SHBG hits estimated at every step of progressive
docking with these settings are summarized in Table 1.

The quality of QSAR solutions featured in Table 1 is
reasonable at all stages. The results also indicate that the
progressive-docking protocol allowed processing of less than
60% of the original docking dataset (51 366 out of 90 272
entries), and this resulted in a 70% enrichment of the docking
database without loss of significant useful information, that is,
only 11 false negatives corresponding to a 97% hit rate. As
Figure 5 illustrates, a less-conservative setting, such as a 5000
sample size and a 20% rejection criteria, can speed up the
docking by 2-fold and still ensures a good enrichment of
potential hits (86% hit rate). Figure 5 also illustrates the
generation of false negative predictions by the progressive-
docking protocol. As this shows, all progressive-docking
experiments allowed an exponential recovery of true positive

predictions, as opposed to the linear hit recovery by traditional
docking, and that the number of false negative predictions
generated was not very high in most cases (only the protocol
utilizing a 1000 sampling set resulted in a higher false positive
rate).

The performance criteria of the progressive-docking procedure
(hit rate, enrichment factor, true positive predictions, etc) are
summarized in Table 2.

It is important to emphasize that the established progressive-
docking hit rate and enrichment factorparameters (Table 2)
possess different meaning when compared to conventional
docking studies operating on decoy sets of compounds. Typi-
cally, to assess the performance of docking or other database
searching procedures of a protein, authors mix a set of already
known ligands with a limited number of presumably inactive
compounds (often structurally similar to the target binders) and
assess how the known binders are being recovered (for recent
studies see refs 38-40). While this approach is adequate, it
possesses certain drawbacks, namely, the decoy sets tend to be
biased toward certain types of compounds (as known active
substances are usually structurally similar), while inactivity of
the negative control substances is only assumed. In contrast,
we investigated the ability of the progressive-docking procedure
to recoverpotential bindersfrom a set of compounds solely by
docking score. The fact that we used a large dataset of 90 000
entries possessing a significant level of noise also made the
simulation more relevant to in silico high throughput studies.

As Table 2 illustrates, progressive docking could achieve a
1.2-2.0-fold enrichment ofpotentialbinders, while maintaining
high (87-99%) hit rates. Thus, the use of a 10 000 sampling
size and 20% rejection criteria resulted in a very balanced 96%

Figure 5. Recovery of 1KDM effective binders (GlideScore< -8.5) from the NCI set of drug-like compounds using various progressive-docking
settings (sample size and rejection percentage).

Table 2. Characteristics of the Progressive-Docking Performance Using Various Sample-Size and Rejection Cutoff Settings

progressive-docking
settings

(sampling size;
rejection threshold)

docked
substances TP FN % yield % hit rate enrichment

20 K; 10% 77 012 280 10 36 99.64 1.17
20 K; 20% 68 447 278 3 41 98.93 1.30
10 K; 10% 69 797 279 2 40 99.29 1.28
10 K; 20% 51 883 270 11 52 96.09 1.67
5 K; 10% 52 353 272 9 52 96.80 1.67
5 K; 20% 38 163 243 38 64 86.48 2.04
1 K; 10% 23 742 195 86 82 69.40 2.64
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hit rate and 67% enrichment, as it allowed filtering out 38 301
of 90 184 molecules. These particular settings have been used
in the following progressive-docking experiments that also
involved the drug-like NCI dataset, which has been docked into
several nonrelated and diverse targets. By conducting this study,
we expected to further validate the developed hybrid QSAR/
docking approach.

Validation of Progressive Docking on Additional Targets.
The above developed procedure and settings have been applied
to several additional targets that included human carbonic
anhydrase (HCA), SARS CoV protease (3CL), HIV viral reverse
transcriptase (HIV-RT), and human corticosteroid-binding globu-
lin (CBG). The choice of these proteins aimed to explore
applicability of progressive docking to very diverse targets with
different binding affinity ranges. Thus, the HCA protein has a
relatively small and mostly polar cavity that includes a zinc

atom, but it can also accommodate ligands with long aliphatic
chain fragments,51 while CBG is similar to the previously
described SHBG protein in so much as its ligand-binding affinity
can be significantly influenced by minor substitutions. However,
CBG ligands have more rotatable bonds, when compared to the
relatively flat testosterone and estrogen derivatives, and it
exhibits very different affinity patterns when compared to
SHBG.52 In one of the studied viral systems, 3CL, its ligands
bind to the protein via covalent interactions, while respecting
strict steric complimentarity,53 whereas the HIV-RT possess a
very large active site formed by the interacting subunits of the
homodimer and represents a known challenge for docking
studies.54

The nature of known ligands for the selected targets is also
very different (thus HCA binds small polar chemicals containing
few rings, while 3CL and HIV-RT tend to interact with flexible

Figure 6. Recovery of true positives (effective binders) and production of false negatives (rejected effective binders) from the NCI set of drug-like
compounds, using a progressive-docking procedure that is based on the QSAR sampling of every 10 000 docked structures and rejecting 20% of
the remaining nondocked molecules. The studied targets: (a) SHBG 1D2S PDB structure, (b) SARS protein, (c) HCA, (d) HIV reverse transcriptase
protein, and (e) CBG.
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poly-ring systems, and CBG strongly prefers corticosteroids
when compared to many other steroid classes). In addition, their
ligand-binding affinities vary significantly from low nanomolar
for CBG to high micromolar levels in the case of 3CT.

The developed progressive-docking procedure described in
the previous sections has been applied to all four additional
targets in the following way. First, for each of the proteins, we
identified a set of known ligands with established binding
affinities or corresponding in vitro inhibiting potentials.51-54 The
identified structures were then added to the original docking
database of NCI drug-like molecules and steroids, expanding
the dataset to 90 272 entries.

All targets were preprocessed for further docking (more
details are in the Materials and Methods section), and all self-
ligands were docked into the proteins using the Glide 2.7
program. The resulting dependences between the docking scores
and the corresponding binding affinity/activity values for 3CL,
HCA, HIV-RT, and CBG proteins were plotted into panels b-e
of Figure 2, which also contain the superimposed structures of
corresponding natives ligands identified from crystal structures
and by the docking. As Figure 2 illustrates for all proteins
(except CBG, where a homology model was used), the Glide
2.7 program reliably reproduced the crystal ligand orientations
and affinity trends for known binders.

At the next step, we applied the progressive-docking routine,
illustrated in Figure 3, to all four proteins, using the sampling
step of 10 000 molecules and a 20% rejection criteria, as
considered optimal in the previous sections. We have also
expanded the range of QSAR descriptors and utilized 58
noncorrelated parameters that included 26 inductive descriptors
for progressive docking with 1KDM, as well as 32 additional
parameters representing conventional QSAR descriptors imple-
mented with in the MOE package,50 as described in Materials
and Methods. As in the case of docking into the 1KDM
structure, we constructed the curves of the true-positive (Gli-
deScore< -8.5) recovery presented in Figure 6.

To illustrate the actual time-saving capabilities of the progres-
sive-docking procedure, we transformed the horizontal axes of
the recovery curves into actual docking times. Thus, according
to our estimates, Glide 2.7 requires 40 s, 45 s, 22 s, 22 s, and
35 s to dock one ligand into the SHBG, 3CL, HIV-RT, HCA,
and CBG active sites, respectively (CPU specifications: P4, 2
GHz, 512 MB RAM). Thus, Figure 6 illustrates that progressive
docking saved 415 h on the SHBG target (out of 1003 single
CPU hours required for docking of 90 272 compounds), 363 h
on CBG (out of 878 h required), 206 h on HCA (out of 502 h
required), 228 h on HIV-RT (out of 551 h required), and 467
h for 3CL (out of 1120 h required). Thus, hundreds of CPU
processing hours can be saved using intermediate QSAR
solutions in relation to generating docking scores. It is worth
mentioning, of course, that the total time required for computing
the QSAR descriptors, database clustering, the automated
creation of QSAR solutions, and the filtering out predicted
nonbinders form the docking database did not exceed several
minutes.

Considering the fact that the Glide running time may reach

4-5 min per ligand depending on the setting,47 the overall time-
saving provided by the hybrid QSAR/docking procedure we
have developed could be even more significant. From our own
experience, in those cases when the docking site is considered
flexible, the Glide may require∼10 min per molecule and,
therefore, the progressive docking may save thousands of hours
of docking even for a modest-sized database of∼100 000
molecules.

Following the completion of progressive docking with HIV-
RT, 3CL, HCA, and CBG, we docked all the rejected com-
pounds (on average 37 000 per target, see Table 3) to estimate
the number of potential binders rejected by the QSAR modeling,
that is, to establish the rates of false negative predictions.

The estimated numbers of molecules rejected by the QSAR,
but which could nonetheless be docked into the corresponding
targets with GlideScore< -8.5 are presented in Table 3. The
false negative predictions accumulated by the progressive
docking on 3CL, HCA, CBG, and HIV-RT are included in the
respective panels of Figure 6.

As the figure and Table 3 illustrate, the hybrid QSAR/docking
procedure managed to preserve of 80-99% of all true hits. Thus,
out of 37 341 molecular structures removed from the docking
database of the CBG target, only two compounds could, in fact,
be successfully docked into the protein. The progressive docking
with the HCA resulted in losing only 1 out of 958 potential
binders (compounds that could be docked with GlideScore<
-8.5). The application of progressive docking to 3CL and HIV-
RT proteins produced more significant numbers of false negative
predictions, and these could be determined by less than optimal
performance of the Glide on these targets. Nonetheless, even
for the 3CL and HIV-RT systems, the progressive-docking hit
rates remained at reasonably high 90 and 80% levels, respec-
tively.

Thus, the performance of the developed hybrid procedure on
some diverse target structures demonstrated that it saves up to
40% of the Glide processing time (transforming into hundreds
of CPU hours), while still recovering 80-100% of potential
docking hits. This, in our opinion, makes this new approach an
attractive accessory for more accurate but slower HTS protocols
involving flexible docking and/or in silico experiments involving
large molecular datasets.

Progressive Docking on the 1D2S Structure.Finally, the
developed progressive-docking procedure has been applied to
find those chemicals among the 90 272 substances studied that
would fit the active site of the 1D2S SHBG structure. This
structure was selected to complement a previous study involving
the 1KDM structure, because 1D2S features the loop segment
Pro130-Arg135′ that is believed to be important for steroid
binding.29 All the progressive-docking steps described in the
previous section have been applied: at each step, 10 000
compounds that maximally covered all QSAR clusters of the
NCI drug-like database were drawn and docked into 1D2S. The
resulting GlideScore values were then used to create the QSAR
model with inductive descriptors, which allow hypothetical
docking scores to be established for the remaining untested
substances and to, thereby, remove 20% of the remaining entries

Table 3. Characteristics of the Progressive-Docking Performance on Five Studied Targets Using 20% Rejection Criteria and 10 000 Docking Sampling

target
docked

molecules
rejected

molecules
time spent

(hours)
time saved

(hours) TP FN
hit rate

(%)

SHBG (1d2s) 52 893 37 379 588 415 147 4 97.35
CBG 52 931 37 341 515 363 131 2 98.50
HCA 52 858 37 414 294 208 958 1 99.90
HIV-RT 52 914 37 358 323 228 3959 1002 79.80
SARS 52 930 37 342 662 467 66 8 89.19
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from further consideration. Five consecutive iteration steps 4-8
were taken during the progressive docking with 1D2S, and a
total of 52 983 substances (out of 90 272) have been docked
into the protein’s active site (see Table 3). As in previously
studies, the recovery of 1D2S hits (compounds docked with the
GlideScore< -8.5) is illustrated in Figure 6a, and this also
features the linear trend for conventional docking recovery of
potential hits.

As a result, 147 potential 1D2S binders were identified, and
the most promising hits identified for the 1KDM and 1D2S
crystal structures of the SHBG protein were selected for
experimental evaluation. To accomplish this, we utilized the
less stringent cutoff values of GlideScore) -8.5 to maximize
the number of potential SHBG ligands identified.

Experimental Testing of the Docking Hits. The docking
results for 1KDM and 1D2S differed, and this may be attributed
to the complex nature of SHBG ligand binding and/or the
possibility that bound ligands induce different changes in the
active sites of these protein structures. We chose 16 top-ranked
nonsteroidal substances from the 1KDM and 1D2S docking
experiments for in vitro testing. All 16 compounds (NSC:
74429, 367779, 376464, 627265, 2801-Z/2, 36398-U/1, 59266-
A/2, 309136-Z/1, 350993-W/1, 32082-F/1, 34319, 42520-Y/1,
48435-F/2, 105825-L/2, 118073-X/1, 167385-X/1) were tested

for their ability to interact with the SHBG ligand-binding site
by using a competitive binding assay that employs tritium-
labeled dihydrotestosterone ([3H]DHT; see Materials and Meth-
ods for details). The initial screening of compounds was
conducted at a single high concentration (approximately 200
µM), and the results demonstrate that three nonsteroidal
compounds (NSC: 32082, 34319, 48435) and one steroid-like
substance (NSC627265) displace up to 35-95% of the [3H]-
DHT from the SHBG steroid-binding site (see Table 4). These
compounds were then selected for a more detailed analysis of
their ability to compete [3H]DHT from the human SHBG
steroid-binding site, relative to known concentrations of the
physiologically most important androgen (testosterone) and
estrogen (17â-estradiol). The resulting competitive displacement
curves generated using these test compounds (see Figure 7)
illustrate that their potencies as SHBG ligands are in line with
their rank potencies in the preliminary screening assay.

The structures of the top 4 binders (NSC: 627265, 32082,
34319, and 48435) are presented in Table 4 along with the
corresponding IC50 values calculated from the displacement
curve shown in Figure 7. These IC50 values (NSC627265)
950 nM, NSC32082) 10.35 µM, NSC34319) 11.14 µM,
NSC48435) 48.23 µM) were compared with those of test-
osterone (15.6 nM) and estradiol (61.6 nM), and relative binding

Table 4. Experimental Relative Binding Affinities (as Compared to Testosterone), IC50 Values, and Association ConstantKa Values Established for
Most Active Leads Identified from the NCI Drug-Like Dataset
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affinity (RBA) values were calculated using testosterone as the
reference (Table 4).

Thus, we have identified four compounds that bind SHBG
with binding affinities in the low micromolar range. The binding
affinity of the best binder, NSC627265, is only about 1 order
of magnitude weaker than that of estradiol. However, this is
not surprising because this compound closely resembles a
steroid, even though it does not contain a typical steroid ring
structure, which is why it was not filtered out from the docking
dataset. The next best binders, NSC32082 and NSC34319, are
more than 2 orders of magnitude weaker in binding affinity than
estradiol, with estimatedKa values of around 1.4× 106 M-1.
These two compounds are stronger SHBG binders than other
nonsteroidal ligands identified in previous studies, where the
highestKa was 1.2× 106 M-1.8 It should also be mentioned
that NSC32082 and NSC34319 bind SHBG almost as effectively
as a natural lignan derivative55 that is the best nonsteroidal
SHBG binder reported to date with aKa of 3.2 (( 1.7) × 106

M-1.55 Moreover, NSC32082 and NSC34319 are synthetic
chemicals that are easier to produce and are amenable to further
structural modifications.

The four SHBG hits we have identified are predicted to reside
within the SHBG steroid-binding pocket in a similar manner
as the biological sex steroid ligands. This is illustrated in Figure
8, which features the hydrogen bonds that likely exist between
the compounds and residues within the 1KDM active site.
Notably, each of the compounds are predicted to form at least
one hydrogen bond on either end anchoring them to SHBG,
just as steroids form hydrogen bonds with SHBG in the PDB
structures.

To summarize, the hybrid procedure we have developed
accomplishes one of the main purposes of docking, that is, the
rejection of predicted nonbinders. The procedure allows a
reduction in the amount of docking computations by 1.2-2
times while still allowing 86-99% recovery of allpotential
binders from the database. Its application has revealed four new
SHBG ligands that are among the most active nonsteroidal hits
for the target identified to date.

Conclusions

The Glide program44 we used in the current study ap-
proximates a systematic search of positional, orientational, and
conformational space of the docked ligand. This methodology
has enabled Glide to perform favorably in several recent
comparative docking studies,56 including our own.10 However,
the Glide protocol and other accurate docking programs are
characterized by relatively low data processing speed, typically
requiring a few minutes of computation per ligand. Thus, the
speed of reliable docking becomes a critical challenge for in
silico high throughout investigations because conventional
molecular datasets routinely include several million molecular
structures. Numerous computational approaches aim to reduce
the amount of computational screening required, including
predocking filters, database clustering, and parallelization
protocols. The incorporation of QSAR solutions, approximating
hypothetical docking scores, may represent yet another strategy
for reducing computational time. Such QSAR strategies can be
used in addition to other conventional predocking filters, such
as those based on molecular size, volume, or drug-like criteria.

For each of the six studied targets, the developed procedure
saved hundreds of hours in terms of the docking time required
to process∼90 000 potential ligands, while maintaining 80-
100% hit recovery rates. Thus, the developed progressive-
docking procedure is an effective approach for accelerating high
throughput screening, especially when applied to accurate but
slower docking approaches and for large-scale studies. The
applicability of advanced, possibly nonlinear QSAR techniques,
such as random forest, support vector machines, bayesian
networks, and artificial neural networks should also be inves-
tigated. For the sake of the current study, we only used linear
data fitting with the PLS approach as we implemented rather
conservative rejection criteria for predicted nonbinders. If one
desires more aggressive progressive docking, special attention
should be paid to the high quality of the intermediate QSAR
solutions.

It is possible that the progressive-docking approach may not
be suitable for docking systems allowing multiple and diverse
binding poses of potential ligands, but this remains to be
investigated.

Materials and Methods

Inductive Descriptors. In summary, the inductive QSAR
variables can be computed by the following equations

Figure 7. Displacement curves for test compounds used in the in vitro
competition assay to determine the relative binding affinities of human
SHBG ligands. The amount of [3H] testosterone bound to SHBG in
the presence of increasing concentrations of competitor ligands (B).

Figure 8. Poses of the four most active hit compounds docked in the
active sites of their respective target protein structures. Each compound
is shown as thicker, yellow sticks, and the protein residues each
compound is thought to interact with are shown as thinner, white sticks.
Potential hydrogen bonds formed in the interaction are shown as blue
circles. (A) NSC32082, (B) NSC48435, (C) NSC627265 are docked
in the active site of 1D2S, and (D) NSC34319 is docked in the active
site of 1KDM.
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whereR is the covalent atomic radii,r is the interatomic distance,
ø is the inductive electronegativity,RS is the steric constant,σ* is
the inductive constants,∆N is the inductive partial charge, andη
andsare the inductive analogues of chemical hardness and softness.

It should be noted that the variables indexed withj subscript
describe the influence of a singe atom onto a group of atomsG
(typically the rest ofN-atomic molecule), whileG indices designate
group (molecular) quantities. The linear character of eqs 1-6 makes
inductive descriptors readily computable and suitable for sizable
databases and positions them as appropriate parameters for large-
scale QSAR models.

Target Preparation. The Maestro suite57 was used to prepare
protein structures for docking. The following PDB files were used
for targets: 1KWR for HCA, 1VRT for HIV-RT, 1KDM and 1D2S
for SHBG, and 1UK4 for 3CL. The structure of human CBG was
obtained by homology modeling onR1-antichymotrypsin serpin
structure, (PDB entry 1QMN) using the MOE programs50 with
default settings.

From all PDB structures, water and ion molecules were removed
and hydrogen atoms were added and adjusted where necessary. The
ligand-binding sites were defined as 10 Å surrounding the cocrys-
tallized ligands in the crystal structures. No water molecules or
ions were retained in the active sites. In the case of the 3CL protein,
the covalently bound ligand was removed from the protein during
the docking site preparation.

Molecular Docking. The consequent docking has been con-
ducted using the Glide 2.7 program, with the default settings and
inductive partial charges assigned to protein molecules according
to the previously published procedure.10 The docking database has
been separated into 10 equal parts that have been docked on 10
machines in parallel (PC specifications: Intel P4, 2.0 GHz
processor, 512 MB RAM, Centos 4.0 OS).

QSAR Descriptors Calculation and Model Building. The
optimized structures of 90 272 compounds were used for calculating
26 non-cross-correlating inductive QSAR descriptors1-5 and 32
conventional QSAR parameters calculated by the MOE program
(the corresponding description values can be obtained for authors
upon request).

Inductive QSAR parameters used for creating the models:
AVerage_EO_Neg, AVerage_EO_Pos, AVerage_Neg_Charge, AV-

erage_Pos_Charge, EO_Equalized, Global_Hardness, Hardnes-
s_of_Most_Pos, Largest_Neg_Softness, Largest_Rs_i_mol, Larg-
est_Rs_mol_i, Most_Neg_Charge, Most_Neg_Rs_mol_i, Most_Neg_-
Sigma_i_mol, Most_Neg_Sigma_mol_i, Most_Pos_Charge, Most-
_Pos_Rs_i_mol, Most_Pos_Sigma_i_mol, Most_Pos_Sigma_mol_i,
Smallest_Pos_Softness, Softness_of_Most_Neg, Sum_Neg_Hard-
ness, Sum_Pos_Hardness, Total_Charge, Total_Neg_Softness, To-
tal_Pos_Softness, Total_Sigma_mol_i.

MOE QSAR parameters used for creating the models:b_double,
b_rotN, b_rotR, b_triple, chiral, a_nN, a_nO, a_nS, FCharge,
lip_don, KierFlex, a_base,Vsa_acc,Vsa_acid,Vsa_base,Vsa_don,
density, logP(o/w), a_ICM, chi1V_C, chiral_u, balabanJ, logS, ASA,
ASA+, ASA-, ASA_H, ASA_P, CASA+, CASA-, DASA, DCASA

For more details on inductive parameters, see references 1-5,
while the conventional QSAR parameters correspond to notations
implemented within the MOE program.50

The inductive QSAR descriptors were calculated by the custom
SVL scripts of the MOE program, which can be downloaded
through the SVL exchange.

SHBG Ligand-Binding Assay. An established competitive
ligand-binding assay was used to determine the relative binding
affinities of the studied compounds to human SHBG, compared to
testosterone and estradiol standards.58 In brief, the assay involved
mixing 100µL aliquots of diluted (1:200) human pregnancy serum
containing approximately 1 nM SHBG, which was pretreated with
dextran-coated charcoal (DCC) to remove endogenous steroid
ligand, with 100µL tritium-labeled DHT ([3H] DHT) at 10 nM as
labeled ligand. For the screening assay, triplicate aliquots (100µL)
of a fixed amount (200µM) of test compound were added to this
SHBG/[3H] DHT mixture and incubated overnight at room tem-
perature. After a further 10 min incubation at 0°C, 500µL of a
DCC slurry was added at 0°C and incubated for 10 min prior to
centrifugation to separate SHBG-bound from free [3H] DHT.
Compounds that displaced more than 35% of the [3H] DHT from
the SHBG in this assay were then diluted serially, and triplicate
aliquots (100µL) of known concentrations of test compounds were
used to generate complete competition curves by incubation with
the SHBG/[3H]DHT mixture and separation of SHBG-bound from
free [3H]DHT, as in the screening assay. The amounts of [3H] DHT
bound to SHBG at each concentration of competitor ligand were
determined by scintillation spectrophotometry and plotted in relation
to the amount of [3H] DHT bound to SHBG at zero concentration
of competitor. From the resulting competition curves, IC50 con-
centrations could be calculated if displacement of more than 50%
of [3H] DHT from SHBG was achieved.

The association constants (Ka) have been calculated from the
RBA parameters using the following equation:Ka(DHT)/[(1 + R)/
RBA - R], whereKa(DHT) ) 0.98× 109 M-1 is the association
constant of the DHT andR (0.05) is the ratio of bound-to-free
tritium-labeled DHT at 50% displacement in the assay.
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